

ANALOG AND DIGITAL ELECTRONICS (CS301ES) COURSE PLANNER

I. COURSE OVERVIEW:

The course has been designed to introduce fundamental principles of analog and digital electronics. The students completing this course will understand basic analog and digital electronics, including semiconductor properties, operational amplifiers, combinational and sequential logic and analog-to-digital digital-to-analog conversion techniques. Finally, students will gain experience in with the design of analog amplifiers, power supplies and logic devices.

II. PREREQUISITS:

- 1. Basic Electronics
- 2. Number Systems

III. COURSE OBJECTIVES:

1.	To introduce components such as diodes, BJTs and FETs.
2.	To know the applications of components.
3.	To give Understand of various types of amplifier circuits.
4.	To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
5.	To understand the concepts of combinational logic circuits and sequential circuits.

IV. COURSE OUTCOMES:

S.No.	Outcomes	Bloom's Taxonomy
	0 1 1 1 1 1 1 1 1 1 1	Level
1.	Know the characteristics of various components.	Knowledge, Understand
1.	Know the characteristics of various components.	(Level1, Level2)
2	Understand the utilization of components	Apply, Create (Level 3,
2.	Understand the utilization of components.	Level 6)
3.	Design and analyze small signal amplifier circuits.	Analyze (Level 4)
4.	Learn Postulates of Boolean algebra and to minimize	Knowledge, Understand
4.	combinational functions.	(Level1, Level2)
5.	Design and analyze combinational and sequential circuits.	Analyze (Level 4)
<i>J</i> .	Design and analyze combinational and sequential circuits.	7 maryze (Eever+)
6.	Know about the logic families and realization of logic	Knowledge, Understand
0.	gates.	(Level1, Level2)

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (PO)	Level	Proficiency assessed by
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex	3	Assignments

		ZE	MATTHAD LIFE EMASO SUUCATION
	Program Outcomes (PO)	Level	Proficiency assessed by
	engineering problems.		
PO2	Problem Analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Examples
PO3	Design/ Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Assignments, Exercises
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	-	-
PO5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an Understand of the limitations.	-	-
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	-	-
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	-
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	-
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	1	Oral Discussions
PO1 0	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear	2	Document Preparation, Presentation

	Program Outcomes (PO)	Level	Proficiency assessed by
	instructions.		
PO1 1	Project management and finance: Demonstrate knowledge and Understand of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	3	Assignments
PO1 2	Life-Long Learning : Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.	2	Assignments

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Leve 1	Proficiency assessed by
PSO 1	Foundation of Mathematical Concepts: To use mathematical methodologies to crack problem using suitable mathematical analysis, data structure and suitable algorithm.	2	Lectures, Assignment
PSO 2	Foundation of Computer System: The ability to interpret the fundamental concepts and methodology of computer systems. Students can understand the functionality of hardware and software aspects of computer systems.	1	Tutorials
PSO 3	Foundations of Software Development: The ability to grasp the software development life cycle and methodologies of software systems. Possess competent skills and knowledge of software design process. Familiarity and practical proficiency with a broad area of programming concepts and provide new ideas and innovations towards research.	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

VII.SYLLABUS:

UNIT – I: Diodes and Applications: Junction diode characteristics: Open circuited p-n junction, p-n junction as a rectifier, V-I characteristics, effect of temperature, diode resistance, diffusion capacitance, diode switching times, breakdown diodes, Tunnel diodes, photo diode, LED.

Diode Applications - clipping circuits, comparators, Half wave rectifier, Full wave rectifier with capacitor filter.

UNIT – II: BJTs: Transistor characteristics: The junction transistor, transistor as an amplifier, CB, CE, CC configurations, comparison of transistor configurations, the operating point, self-bias or Emitter bias, bias compensation, thermal runaway and stability, transistor at low frequencies, CE amplifier

response, gain bandwidth product, Emitter follower, RC coupled amplifier, two cascaded CE and multistage CE amplifiers.

UNIT-III: FETs and Digital Circuits: FETs: JFET, V-I characteristics, MOSFET, low frequency CS and CD amplifiers.

Digital Circuits: Digital (binary) operations of a system, OR gate, AND gate, NOT, EXCLUSIVE OR gate, De Morgan Laws, NAND and NOR DTL gates, modified DTL gates, HTL and TTL gates, output stages, RTL and DCTL, CMOS, Comparison of logic families.

UNIT – IV: Combinational Logic Circuits: Basic Theorems and Properties of Boolean Algebra, Canonical and Standard Forms, Digital Logic Gates, The Map Method, Product-of-Sums Simplification, Don't-Care Conditions, NAND and NOR Implementation, Exclusive-OR Function, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers.

UNIT – V: Sequential Logic Circuits: Sequential Circuits, Storage Elements: Latches and flip flops, Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Shift Registers, Ripple Counters, Synchronous Counters, Random-Access Memory, Read-Only Memory.

TEXT BOOKS:

1. Integrated Electronics: Analog and Digital Circuits and Systems, 2/e, Jaccob Millman, Christos Halkias and Chethan D. Parikh, Tata McGraw-Hill Education, India, 2010.

2. Digital Design, 5/e, Morris Mano and Michael D. Cilette, Pearson, 2011.

REFERENCE BOOKS:

- 1. Electronic Devices and Circuits, Jimmy J Cathey, Schaum's outline series, 1988.
- 2. Digital Principles, 3/e, Roger L. Tokheim, Schaum's outline series, 1994.

NPTEL Web Course: https://nptel.ac.in/courses/108102095

https://nptel.ac.in/courses/117106086

NPTEL Video Course: https://nptel.ac.in/courses/108102095

https://nptel.ac.in/courses/117106086

GATESYLLABUS: DigitalLogic:

Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).

VIII.COURSE PLAN (WEEK-WISE):

Session	Week	Unit	Topics	Link for PPT	Link for PDF	Course Learning Outcomes	Teaching Methodolog y	Reference
				https://drive.goo	https://drive.google.	Know the		
			Ilmit I.	gle.com/drive/u/	com/drive/u/0/folde	physics of P-	Chalk	Т1
1	1	1	<u>Unit-I</u> : Introduction	0/folders/11YA2	rs/11YA2NHs7CA	N junction.	and	T1, T2
			introduction	NHs7CAylrcXu	ylrcXuCGUyysDX		Talk	12
				CGUyysDXB5T	B5TwKq98			

WPARTHO HILLIE BASIO EDUCATION

			1	1		ı	
			<u>wKq98</u>				
2		Open circuited P-N junction	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Understand the open circuited P-N junction.	Chalk and Talk	T1, T2
3		P-N junction as a rectifier	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	how the diode acts as rectifier and study the characteristics of rectifiers.	Chalk and Talk	T1, T2
4		V-I Characteristic s	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Understand the V characteristics of P-N junction.	Chalk and Talk	T1, T2
5		Effect of temperature, diode resistance	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Understand the temperature effects and diode resistance	Chalk and Talk	T1, T2
6	2	Diffusion Capacitance, **. Drift Capacitance	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Know about drift and diffusion capacitances.	Chalk and Talk	T1, T2
7		Diode switching times	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Understand diode switching times.	Discuss	T1, T2

					ANNALLING FOR THE PARTIES EXPLICATION		
8		Breakdown diodes	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	the concept of breakdown in diodes and study the operation and characteristics of Zener diode.	Chalk and Talk	T1, T2
9		Tunnel diode	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Understand the operation, characteristics and applications of tunnel diode	Chalk and Talk	T1, T2
10	3	Photo diode, LED	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Understand the operation, characteristics and applications of photo diode and LED.	Chalk and Talk	T1, T2
11		Clipping circuits, Comparators	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Explain clipping circuits, comparators.	Chalk and Talk, PPTs	T1, T2
12		Half wave rectifier	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	how the diode acts as rectifier and study the characteristics of rectifiers.	Chalk and Talk, PPTs	T1, T2
13	4	Full wave rectifier	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX	Understand how the diode acts as rectifier and	Chalk and Talk, PPTs	T1, T2

				T	T			
				CGUyysDXB5T	B5TwKq98	study the		
				wKq98		characteristics		
						of rectifiers.		
				https://drive.goo	https://drive.google.	Understand		
				gle.com/drive/u/	com/drive/u/0/folde	the general		
				0/folders/11YA2	rs/11YA2NHs7CA	conditions for	Chalk	
			Rectifier with	NHs7CAylrcXu	ylrcXuCGUyysDX	filters and	and	T1,
14			capacitor	CGUyysDXB5T	B5TwKq98	study the	Talk,	T2
			filter	wKq98	D31 wKq70	rectifier with	PPTs	12
				wKq36			1118	
						capacitor		
				1	1	filter.		
				https://drive.goo	https://drive.google.			
				gle.com/drive/u/	com/drive/u/0/folde			
15			Revision	0/folders/11YA2	rs/11YA2NHs7CA			
			110 (151011	NHs7CAylrcXu	ylrcXuCGUyysDX			
				CGUyysDXB5T	B5TwKq98			
				wKq98				
			Mock Test-I	https://drive.goo	https://drive.google.			
				gle.com/drive/u/	com/drive/u/0/folde			
1.0				0/folders/11YA2	rs/11YA2NHs7CA			
16				NHs7CAylrcXu	ylrcXuCGUyysDX			
				CGUyysDXB5T	B5TwKq98			
				wKq98	1			
			Unit-II:	https://drive.goo	https://drive.google.	Understand		
			Transistor	gle.com/drive/u/	com/drive/u/0/folde	the basics of	Chalk	
			characteristic	0/folders/11YA2	rs/11YA2NHs7CA	transistors.	and	T1,
17			s: The	NHs7CAylrcXu	ylrcXuCGUyysDX	transistors.	Talk,	T2
			junction	CGUyysDXB5T	B5TwKq98		PPTs	12
			transistor	wKq98	D31 WKq70		1115	
			transistor	•	https://drive.google	Ctudytho		
				https://drive.goo	https://drive.google.com/drive/u/0/folde	Studythe of	Challe	
	_	_	Tuonoistere	gle.com/drive/u/		operation of	Chalk	701
18	5	2	Transistor as	0/folders/11YA2	rs/11YA2NHs7CA	transistor as	and	T1,
			an amplifier	NHs7CAylrcXu	ylrcXuCGUyysDX	an amplifier.	Talk,	T2
				CGUyysDXB5T	B5TwKq98		PPTs	
				wKq98				
				https://drive.goo	https://drive.google.	Study the	Chalk	
			CB, CE, CC	gle.com/drive/u/	com/drive/u/0/folde	characteristics	and	T1,
19			Configuration	0/folders/11YA2	rs/11YA2NHs7CA	of CB,CE,CC	Talk,	T2
			S	NHs7CAylrcXu	ylrcXuCGUyysDX	configurations	PPTs	14
				CGUyysDXB5T	B5TwKq98		1113	

TEST OF THE PROPERTY OF THE PR	Monda
AND MALKE BASES ES	USATION

	1		T	T		1	
			wKq98				
20		CB, CE, CC Configuration s	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Study the characteristics of CB,CE,CC configurations	Chalk and Talk, PPTs	T1, T2
21		Bridge Class	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98			
22	6	Comparison of transistor configuration s	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Compare various configurations of transistors.	Chalk and Talk	T1, T2
23		Operating point, Selfbias or Emitter bias	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Understand the concept of operating point and purpose of biasing.	PPTs, discussi ons	T1, T2
24		Bias Compensatio n, Thermal Runaway and Stability	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Study about bias compensation, thermal runaway and stability.	Chalk and Talk	T1, T2
25	7	Transistor at low frequencies	https://drive.goo gle.com/drive/u/ 0/folders/11YA2 NHs7CAylrcXu CGUyysDXB5T wKq98	https://drive.google. com/drive/u/0/folde rs/11YA2NHs7CA ylrcXuCGUyysDX B5TwKq98	Explain the operation of transistor at low frequencies.	Chalk and Talk	T1, T2, R1
26		CE Amplifier Response,	https://drive.goo gle.com/drive/u/	https://drive.google. com/drive/u/0/folde	Explain the operation of	Chalk and	T1, T2,

						Parate And The Transport of Tra		
			Gain	0/folders/11YA2	rs/11YA2NHs7CA	CE amplifier,	Talk,	R1
			Bandwidth	NHs7CAylrcXu	ylrcXuCGUyysDX	study its	PPTs	
			Product	CGUyysDXB5T	B5TwKq98	frequency		
				wKq98		response and		
						gain		
						bandwidth		
						product.		
				https://drive.goo	https://drive.google.			
				gle.com/drive/u/	com/drive/u/0/folde			
27			D : 1 Cl	0/folders/11YA2	rs/11YA2NHs7CA			
27			Bridge Class	NHs7CAylrcXu	ylrcXuCGUyysDX			
				CGUyysDXB5T	B5TwKq98			
				wKq98	_			
	1			https://drive.goo	https://drive.google.	Understand		
				gle.com/drive/u/	com/drive/u/0/folde	the operation	Cl. 11	
20			Emitter	0/folders/11YA2	rs/11YA2NHs7CA	of emitter	Chalk	T1,
28			Follower	NHs7CAylrcXu	ylrcXuCGUyysDX	follower.	and	T2
				CGUyysDXB5T	B5TwKq98		Talk	
				wKq98	_			
			RC Coupled	https://drive.goo	https://drive.google.	Explain the		
			Amplifier,	gle.com/drive/u/	com/drive/u/0/folde	operation of		
			Two	0/folders/11YA2	rs/11YA2NHs7CA	RC coupled	G1 11	
20			Cascaded CE	NHs7CAylrcXu	ylrcXuCGUyysDX	two cascaded	Chalk	T1,
29			and	CGUyysDXB5T	B5TwKq98	CE and	and	T2
			Multistage	wKq98	1	multistage CE	Talk	
			CE	1		amplifiers.		
			Amplifiers			_		
	1		-	https://drive.goo	https://drive.google.	Understand		
			<u>Unit-III</u> :	gle.com/drive/u/	com/drive/u/0/folde	the operation,	Chalk	
20	8		JFET, V-I	0/folders/11YA2	rs/11YA2NHs7CA	V-I	and	T1,
30			Characteristic	NHs7CAylrcXu	ylrcXuCGUyysDX	characteristics	Talk,	T2
			S	CGUyysDXB5T	B5TwKq98	of JFET.	PPTs	
				wKq98	1			
	1	3		https://drive.goo	https://drive.google.	Understand		
				gle.com/drive/u/	com/drive/u/0/folde	the operation,	Chalk	
			Modera	0/folders/11YA2	rs/11YA2NHs7CA	V-I	and	T1,
31			MOSFET	NHs7CAylrcXu	ylrcXuCGUyysDX	characteristics	Talk,	T2
				CGUyysDXB5T	B5TwKq98	of MOSFFET.	PPTs	
				wKq98				
32	1		Bridge Class	https://drive.goo	https://drive.google.			
	<u> </u>	<u> </u>		11	11		l	

						SE ES		
				gle.com/drive/u/	com/drive/u/0/folde			
				0/folders/11YA2	rs/11YA2NHs7CA			
				NHs7CAylrcXu	ylrcXuCGUyysDX			
				CGUyysDXB5T	B5TwKq98			
				wKq98				
				https://drive.goo	https://drive.google.	Understand		
			Low	gle.com/drive/u/	com/drive/u/0/folde	the operation	Chalk	
22			frequency CS	0/folders/11YA2	rs/11YA2NHs7CA	of low	and	T1,
33			and CD	NHs7CAylrcXu	ylrcXuCGUyysDX	frequency CS	Talk,	T2
			Amplifiers	CGUyysDXB5T	B5TwKq98	and CD	PPTs	
			F	wKq98	₁ ,	amplifiers.		
			Digital	https://drive.goo	https://drive.google.	Understand		
			(binary)	gle.com/drive/u/	com/drive/u/0/folde	the arithmetic		
			operations of	0/folders/11YA2	rs/11YA2NHs7CA	operations	Chalk	
			a system,	NHs7CAylrcXu	ylrcXuCGUyysDX	carried by	and	T1,
34			**. Boolean	CGUyysDXB5T	B5TwKq98	digital	Talk,	T2
			Laws,	wKq98	D31 wKq36		PPTs	12
	9		ŕ	wKq90		systems.	PPIS	
			De Morgan					
			Laws	1 //1:	1 //1:	T7 7		
			OR, AND,	https://drive.goo	https://drive.google.	Understand		
			NOT, EX-	gle.com/drive/u/	com/drive/u/0/folde	the OR, AND,	G1 11	
			OR, NAND	0/folders/11YA2	rs/11YA2NHs7CA	NOT, EX-	Chalk	
35			and NOR	NHs7CAylrcXu	ylrcXuCGUyysDX	OR, NAND	and	T1,
			DTL Gates,	CGUyysDXB5T	B5TwKq98	and NOR	Talk,	T2
			Modified	wKq98		DTL gates	PPTs	
			DTL Gates			and modified		
			DIL Gates			DTL gates.		
36						I Mic	d Examii	nations
30						(Week	9)	
			OR, AND,	https://drive.goog	https://drive.googl	Understand		
			NOT, EX-	le.com/drive/u/0/f	e.com/drive/u/0/fol	the OR, AND,		
			,	olders/11YA2NH	ders/11YA2NHs7	NOT, EX-	Chalk	
27			OR, NAND	s7CAylrcXuCGU	CAylrcXuCGUyys	OR, NAND	and	T1,
37			and NOR	yysDXB5TwKq9	DXB5TwKq98	and NOR	Talk,	T2
	10	3	DTL Gates,	8	•	DTL gates	PPTs	
			Modified			and modified		
			DTL Gates			DTL gates.		
			HTL and	https://drive.goog	https://drive.googl	Understand	Chalk	_
38			TTL Gates,	le.com/drive/u/0/f	e.com/drive/u/0/fol	the HTL and	and	T1,
			Output Stages	olders/11YA2NH	ders/11YA2NHs7	TTL gates and	Talk,	T2
			Surpai Diagos	010015/1111121111	\$515/1111121\fild1	112 gates and	ı um,	

						STORY.		
				s7CAylrcXuCGU	CAylrcXuCGUyys	their out put	PPTs	
				yysDXB5TwKq9	DXB5TwKq98	stages.		
				8				
				https://drive.goog	https://drive.googl	Understand		
				le.com/drive/u/0/f	e.com/drive/u/0/fol	the RTL,	Chalk	
20			RTL, DCTL	olders/11YA2NH	ders/11YA2NHs7	DCTL and	and	T1,
39			and CMOS	s7CAylrcXuCGU	CAylrcXuCGUyys	CMOS gates.	Talk,	T2
				yysDXB5TwKq9	DXB5TwKq98		PPTs	
				8	_			
				https://drive.goog	https://drive.googl	Compare		
				le.com/drive/u/0/f	e.com/drive/u/0/fol	various logic	Chalk	
40			Comparison	olders/11YA2NH	ders/11YA2NHs7	families.	and	T1,
40			of Logic	s7CAylrcXuCGU	CAylrcXuCGUyys		Talk,	T2
			Families	yysDXB5TwKq9	DXB5TwKq98		PPTs	
				8	•			
				https://drive.goog	https://drive.googl			
				le.com/drive/u/0/f	e.com/drive/u/0/fol			
4.1			D'I CI	olders/11YA2NH	ders/11YA2NHs7			
41			Bridge Class	s7CAylrcXuCGU	CAylrcXuCGUyys			
				yysDXB5TwKq9	DXB5TwKq98			
				8	_			
			<u>Unit-IV</u> :	https://drive.goog	https://drive.googl	Understand		
			Introduction	le.com/drive/u/0/f	e.com/drive/u/0/fol	the design and	Chalk	
42			to	olders/11YA2NH	ders/11YA2NHs7	analysis of	and	T1,
42			Combinationa	s7CAylrcXuCGU	CAylrcXuCGUyys	combinational	Talk,	T2
			l Logic	yysDXB5TwKq9	DXB5TwKq98	logic circuits.	PPTs	
	11		Circuits	8				
	11		Basic	https://drive.goog	https://drive.googl	Learn		
			Theorems and	le.com/drive/u/0/f	e.com/drive/u/0/fol	Boolean	Chalk	
43			Properties of	olders/11YA2NH	ders/11YA2NHs7	algebra and	and	T1,
13		4	Boolean	s7CAylrcXuCGU	CAylrcXuCGUyys	logical	Talk,	T2
			Algebra	yysDXB5TwKq9	DXB5TwKq98	operations in	PPTs	
			Aigeora	8		Boolean		
				https://drive.goog	https://drive.googl	algebra.		
			Canonical	le.com/drive/u/0/f	e.com/drive/u/0/fol		Chalk	
44				olders/11YA2NH	ders/11YA2NHs7		and	T1,
		and Standard Forms	s7CAylrcXuCGU	CAylrcXuCGUyys		Talk,	T2	
			LOTHIS	yysDXB5TwKq9	DXB5TwKq98		PPTs	
				8				
45	12		Bridge Class	https://drive.goog	https://drive.googl			

						T	ı
			le.com/drive/u/0/f	e.com/drive/u/0/fol			
			olders/11YA2NH	ders/11YA2NHs7			
			s7CAylrcXuCGU	CAylrcXuCGUyys			
			yysDXB5TwKq9	DXB5TwKq98			
			8				
			https://drive.goog	https://drive.googl	Identify basic		
			le.com/drive/u/0/f	e.com/drive/u/0/fol	building	Chalk	
1.0		Digital Logic	olders/11YA2NH	ders/11YA2NHs7	blocks of	and	T1,
46		Gates	s7CAylrcXuCGU	CAylrcXuCGUyys	digital	Talk,	T2
			yysDXB5TwKq9	DXB5TwKq98	systems.	PPTs	
			8	_			
			https://drive.goog	https://drive.googl	Analyze to		
			le.com/drive/u/0/f	e.com/drive/u/0/fol	avoid the	Chalk	
4.7		The Map	olders/11YA2NH	ders/11YA2NHs7	redundant	and	T1,
47		Method	s7CAylrcXuCGU	CAylrcXuCGUyys	terms in	Talk,	T2
			yysDXB5TwKq9	DXB5TwKq98	Boolean	PPTs	
			8	•	functions		
		- · · · ·	https://drive.goog	https://drive.googl			
		Product-of-	le.com/drive/u/0/f	e.com/drive/u/0/fol		Chalk	
4.0		Sums	olders/11YA2NH	ders/11YA2NHs7		and	T1,
48		Simplificatio	s7CAylrcXuCGU	CAylrcXuCGUyys		Talk,	T2
		n, Don't-Care	yysDXB5TwKq9	DXB5TwKq98		PPTs	
		Conditions	8	1			
			https://drive.goog	https://drive.googl	Design		
		NAND and	le.com/drive/u/0/f	e.com/drive/u/0/fol	functions	Chalk	
4.0		NOR	olders/11YA2NH	ders/11YA2NHs7	using	and	T1,
49		Implementati	s7CAylrcXuCGU	CAylrcXuCGUyys	universal	Talk,	T2
		on	yysDXB5TwKq9	DXB5TwKq98	gates.	PPTs	
			8	•			
			https://drive.goog	https://drive.googl	Understand		
			le.com/drive/u/0/f	e.com/drive/u/0/fol	the EX-OR	Chalk	
	13	Exclusive-OR	olders/11YA2NH	ders/11YA2NHs7	function.	and	T1,
50		Function	s7CAylrcXuCGU	CAylrcXuCGUyys		Talk,	T2
			yysDXB5TwKq9	DXB5TwKq98		PPTs	
			8	== -1 , 0		-~	
			https://drive.goog	https://drive.googl	Understand		
			le.com/drive/u/0/f	e.com/drive/u/0/fol	the design	Chalk	_
51		**. Binary	olders/11YA2NH	ders/11YA2NHs7	and analysis	and	T1,
		Adders	s7CAylrcXuCGU	CAylrcXuCGUyys	of	Talk,	T2
			yysDXB5TwKq9	DXB5TwKq98	combination	PPTs	
			7,702,1120,1 111147		Johnson		

			8		al logic		
					circuits.		
			https://drive.goog	https://drive.googl			
			le.com/drive/u/0/f	e.com/drive/u/0/fol			
52		Duidea Class	olders/11YA2NH	ders/11YA2NHs7			
32		Bridge Class	s7CAylrcXuCGU	CAylrcXuCGUyys			
			yysDXB5TwKq9	DXB5TwKq98			
			8				
		Binary	https://drive.goog	https://drive.googl	Understand		
		Adder-	le.com/drive/u/0/f	e.com/drive/u/0/fol	the design and	Chalk	
53		Subtractor,	olders/11YA2NH	ders/11YA2NHs7	analysis of	and	T1,
33		Decimal	s7CAylrcXuCGU	CAylrcXuCGUyys	combinational	Talk,	T2
		Adder	yysDXB5TwKq9	DXB5TwKq98	logic circuits.	PPTs	
		Addel	8				
			https://drive.goog	https://drive.googl			
		Binary	le.com/drive/u/0/f	e.com/drive/u/0/fol		Chalk	
54		Multiplier,	olders/11YA2NH	ders/11YA2NHs7		and	T1,
34		Magnitude	s7CAylrcXuCGU	CAylrcXuCGUyys		Talk,	T2
		Comparator	yysDXB5TwKq9	DXB5TwKq98		PPTs	
	14		8				
	14		https://drive.goog	https://drive.googl			
			le.com/drive/u/0/f	e.com/drive/u/0/fol			
55		Decoders	olders/11YA2NH	ders/11YA2NHs7			
33		Decoders	s7CAylrcXuCGU	CAylrcXuCGUyys			
			yysDXB5TwKq9	DXB5TwKq98			
			8				
			https://drive.goog	https://drive.googl	Analyze the		
			le.com/drive/u/0/f	e.com/drive/u/0/fol	design of	Chalk	
56		Encoders	olders/11YA2NH	ders/11YA2NHs7	design of decoders,	and	T1,
50		Effecters	s7CAylrcXuCGU	CAylrcXuCGUyys	encoders and	Talk,	T2
			yysDXB5TwKq9	DXB5TwKq98	multiplexers.	PPTs	
			8		mumpieseis.		
	1		https://drive.goog	https://drive.googl			
			le.com/drive/u/0/f	e.com/drive/u/0/fol			
57		Multiplexers	olders/11YA2NH	ders/11YA2NHs7			
	16	Munipieners	s7CAylrcXuCGU	CAylrcXuCGUyys			
	10		yysDXB5TwKq9	DXB5TwKq98			
			8				
58		Bridge Class	https://drive.goog	https://drive.googl			
50		Diage Class	le.com/drive/u/0/f	e.com/drive/u/0/fol			

			Τ			S TO THE STATE OF		
				olders/11YA2NH	ders/11YA2NHs7			
				s7CAylrcXuCGU	CAylrcXuCGUyys			
				yysDXB5TwKq9	DXB5TwKq98			
				8				
				https://drive.goog	https://drive.googl	Understand		
			TT:4	le.com/drive/u/0/f	e.com/drive/u/0/fol	the design and	Chalk	
50			<u>Unit-</u>	olders/11YA2NH	ders/11YA2NHs7	analysis of	and	T1,
59			<u>V</u> :Sequential	s7CAylrcXuCGU	CAylrcXuCGUyys	sequential	Talk,	T2
			Circuits	yysDXB5TwKq9	DXB5TwKq98	logic circuits.	PPTs	
				8	_	_		
				https://drive.goog	https://drive.googl			
			Storage	le.com/drive/u/0/f	e.com/drive/u/0/fol	Understand	Chalk	
			Elements:	olders/11YA2NH	ders/11YA2NHs7	construction	and	T1,
60			Latches and	s7CAylrcXuCGU	CAylrcXuCGUyys	of latches and	Talk,	T2
			flip flops	yysDXB5TwKq9	DXB5TwKq98	flip flops.	PPTs	
			1 1	8	1			
			Analysis of	https://drive.goog	https://drive.googl	Analyse the		
			Clocked	le.com/drive/u/0/f	e.com/drive/u/0/fol	clocked		
			Sequential	olders/11YA2NH	ders/11YA2NHs7	sequential	Chalk	
61			Circuits, State	s7CAylrcXuCGU	CAylrcXuCGUyys	circuits and	and	T1,
01			Reduction	yysDXB5TwKq9	DXB5TwKq98	perform state	Talk,	T2
			and	8	Briber wrigs	reduction and	PPTs	
		5	Assignment			assignments.		
			1 Issignment	https://drive.goog	https://drive.googl	Understand		
				le.com/drive/u/0/f	e.com/drive/u/0/fol	the design and	Chalk	
			Shift	olders/11YA2NH	ders/11YA2NHs7	analysis of	and	T1,
62			Registers	s7CAylrcXuCGU	CAylrcXuCGUyys	shift registers.	Talk,	T2
			Registers	yysDXB5TwKq9	DXB5TwKq98	sinit registers.	PPTs	12
	17			8	DAD31 WKq70		1115	
				https://drive.goog	https://drive.googl			
				le.com/drive/u/0/f	e.com/drive/u/0/fol			
				olders/11YA2NH	ders/11YA2NHs7			
63			Bridge Class	s7CAylrcXuCGU	CAylrcXuCGUyys			
				yysDXB5TwKq9	DXB5TwKq98			
				yysDXB31wKq9	DVDIIMVAA99			
				https://drive.goog	https://drive.googl	Understand		
			Ripple	le.com/drive/u/0/f	e.com/drive/u/0/fol		Chalk	
64			Counters,	olders/11YA2NH	ders/11YA2NHs7	the design and analysis of	and	T1,
04			Synchronous				Talk,	T2
			Counters	s7CAylrcXuCGU	CAylrcXuCGUyys	various	PPTs	
				yysDXB5TwKq9	DXB5TwKq98	counters.		

TE	
	1
1	
E	
S SPANIET NO METTE	MAKED EDUCATION

			8						
65		Random- Access Memory, Read-Only Memory	le.co older s7C	s://drive.goog om/drive/u/0/f rs/11YA2NH AylrcXuCGU DXB5TwKq9	https://drive.googl e.com/drive/u/0/fol ders/11YA2NHs7 CAylrcXuCGUyys DXB5TwKq98	Unders the cond memory	cept of	Chalk and Talk, PPTs	T1, T2
65	18	Revision	le.co older	s://drive.goog om/drive/u/0/f rs/11YA2NH AylrcXuCGU DXB5TwKq9	https://drive.googl e.com/drive/u/0/fol ders/11YA2NHs7 CAylrcXuCGUyys DXB5TwKq98	Revise topics.	above	PPTs	T1, T2
	-						II Mi (Week	d Examir : 18)	nations

IX.MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM **OUTCOMES AND PROGRAM SPECIFIC OUTCOMES**

Course Outcomes					Pro	gram	Outcom	nes					Program Specific Outcomes		
Outcomes	PO	PO	PO	PO	PO5	PO	PO7	PO	PO9	PO	PO	PO	PS	PS	PSO3
	1	2	3	4	103	6	107	8	10)	10	11	12	01	O2	1503
CO1	3	2	3	-	-	-	-	-	1	-	-	2	2	1	-
CO2	3	2	2	-	-	-	-	-	-	-	-	2	2	-	-
CO3	3	2	3	-	-	-	-	-	-	2	3	-	-	-	-
CO4	3	2	2	-	-	-	-	-	-	2	1	-	2	-	-
CO5	3	2	3	-	-	-	-	-	1	-	3	-	-	1	-
CO6	3	2	2	-	-	-	-	-	-	-	3	2	-	-	-
Average	3	2	2.5	-	-	-	-	-	1	2	2.5	2	2	1	-
Average (Rounded)	3	2	3	1	-	1	-	1	1	2	3	2	2	1	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

XLQUESTION BANK (JNTUH) : UNIT - I

Long Answer Questions:

S.No.	Question	Blooms	Course
		Taxonomy	Outcom
		Level	e
1.	Explain the formation of PN junction diode.	Remember	1

		NOTARTINO VIELES BASED EDUCATION	>
2.	Discuss the operation of PN junction diode as rectifier.	Understand	1
3.	Define biasing. Briefly describe the operation of PN diode under forward and reverse bias conditions.	Understand	1
4.	Sketch the V-I characteristics of p-n junction diode for forward bias voltages. Distinguish between the incremental resistance and the apparent resistance of the diode?	Evaluation	1
5.	Explain the temperature dependence of VI characteristics of PN diode?	Comprehensi on	1
6.	Derive an expression for total diode current starting from Boltzmann relationship in terms of the applied voltage?	Knowledge	1
7.	Explain the V-I characteristics of Zener diode and distinguish between Avalanche and Zener Break downs?	Understand	1
8.	Explain the concept of diode capacitance. Derive expression for transition capacitance?	Understand	1
9.	Define depletion region at p-n junction? What is the effect of forward and reverse biasing of p-n junction on the depletion region? Explain with necessary diagrams?	Remember	1
10.	Explain the tunneling phenomenon. Explain the characteristics of tunnel diode with the help of necessary energy band diagrams?	Understand	1
11.	What is the photo diode? Explain its principle of operation and applications in detail?	Remember	1
12.	Explain the construction and working of LED?	Understand	1
13.	Discuss the applications of diode as clipper circuits.	Remember	1
14.	Briefly explain the operation of a comparator.	Remember	1
15.	Draw the block diagram of a regulated power supply and explain its operation?	Understand	1
16.	Draw the circuit of a half-wave-rectifier and find out the ripplefactor, % regulation? Efficiency and PIV?	Analyze	1
17.	Draw the circuit of bridge rectifier and explain its operation with the help of input and output waveforms?	Analyze	1
18.	With suitable diagrams, explain the working of centre-tapped full wave rectifier. Derive expressions for V_{DC} , I_{DC} , V_{rms} and I_{rms} for it?	Understand	1

-				7
	19.	Explain the relative merits and demerits of all the	Understand	1
		rectifiers?		1
I	20.	Mention the need for filter circuits in rectifiers. Explain	Understand	1
		the working of capacitor filter.	Understand	1

Short Answer Questions:

S.No.	Question	Blooms Taxonomy Level	Course Outcome
1.	Define Electronics?	Remember	1
2.	Explain about forward bias of diode?	Understand	1
3.	Explain about reverse bias of diode?	Understand	1
4.	Write the applications of diode?	Comprehensio n	1
5.	Draw the V-I characteristics of diode?	Comprehensio n	1
6.	List the differences between ideal diode and practical diode?	Remember	1
7.	Define diffusion capacitance?	Knowledge	1
8.	Define transition capacitance?	Remember	1
9.	Define static resistance?	Remember	1
10.	Define dynamic resistance	Remember	1
11.	Write the equation of diode current	Remember	1
12.	Define cut-in voltage?	Remember	1
13.	Write the differences between avalanche and zener breakdown mechanisms?	Knowledge	1
14.	Define zener breakdown mechanism?	Remember	1
15.	Define depletion region?	Remember	1
16.	Explain the temperature dependence of VI characteristics of PN diode?	Understand	1
17.	Define doping?	Remember	1
18.	Explain about extrinsic semiconductor	Understand	1
19.	Explain about unbiased PN junction?	Understand	1

	,		7
20.	Write down the expression for diode current?	Knowledge	1
21.	Define drift current?	Remember	1
22.	List the applications of Zener diode?	Analyze	1
23.	Define forbidden energy gap?	Remember	1
24.	With appropriate circuit diagram explain the DC load line analysis of semiconductor diode?	Analyze	1
25.	Define Peak Inverse voltage of a diode?	Remember	1
26.	What is the principle of operation of photodiode?	Knowledge	1
27.	Give the principle of operation of Light Emitting Diode?	Analyze	1
28.	Define diffusion current?	Remember	1
29.	List the applications of LED.	Analyze	1
30.	Define photodiode?	Remember	1

UNIT – II

Long Answer Questions:

S.No.	Question	Blooms	Course
		Taxonomy Level	Outcome
1.	With a neat diagram explain the various current components in an NPN bipolar junction transistor & hence derive general equation for collector current, I _C ?	Understand	2
2.	Define Early-effect; explain why it is called as basewidth modulation? Discuss its consequences in transistors in detail?	Remember	2
3.	How transistor acts as an amplifier?	Remember	2
4.	Draw the input and output characteristics of a transistor in common emitter configurations?	Comprehensio n	2
5.	Draw the input and output characteristics of a transistor in common base configurations?	Evaluate	2
6.	Draw the input and output characteristic of a transistor in common collector configurations?	Comprehensio n	2
7.	Explain the constructional details of Bipolar Junction Transistor?	Understand	2
8.	Derive the relation among α , β and γ ?	Evaluation	2
9.	What is thermal runaway in transistors? Obtain the	Remember	2

		OND AND THE WANTED FOR	
	condition for thermal stability in transistors?		
10.	Analyze general transistor amplifier circuit using h parameter model. Derive the expressions for $A_{\rm I}$, $A_{\rm V}$, $R_{\rm i}$, $R_{\rm o}$, $A_{\rm Is}$, $A_{\rm Vs}$.	Analyze	2
11.	Draw the circuit of an emitter follower, and derive the expressions for A_I , A_V , R_i , R_o in terms of CE parameters.	Remember	2
12.	Write the analysis of a CE amplifier circuit using h parameters. Derive the expressions for A_I , A_V , R_i , R_o , A_{Is} , A_{Vs} .	Analyze	2
13.	Define h-parameter of a transistor in a small signal amplifier. What are the benefits of h-parameters?	Remember	2
14.	Compare the different types of coupling methods used in multistage amplifiers.	Remember	2
15.	Sketch two RC-coupled CE transistor stages. Show the middle and low frequency model for one stage. Write the expressions for current gains.	Remember	2
16.	Explain about different methods of Inter stage coupling in amplifiers. When two stages of identical amplifiers are cascaded, obtain the expressions for overall voltage gain, current gain and power gain.	Understand	2

Short Answer Questions:

S.No.	Question	Blooms Taxonomy	Course
		Level	Outcome
1.	What is meant by operating point Q?	Comprehension	2
2.	Draw the symbols of NPN and PNP transistor?	Comprehension	2
3.	Explain the operation of BJT and its types?	Understand	2
4.	Explain the breakdown in transistor?	Understand	2
5.	Explain the transistor switching times?	Understand	2
6.	Define Transistor current?	Remember	2
7.	Define early effect or base width modulation?	Remember	2
8.	Explain about transistor amplifier?	Understand	2
9.	Define current amplification factor?	Remember	2
10.	When does a transistor act as a switch?	Comprehension	2
11.	Explain about the various regions in a transistor?	Understand	2
12.	Draw the small signal model of a CE configuration?	Knowledge	2

		AND THAT YOU CALLEY PARKED OF	USANCH S
13.	Draw the output characteristics of NPN transistor in CEconfiguration?	Comprehension	2
14.	Define hie and he in CE configuration?	Remember	2
15.	Define hoe and hre in CB configuration?	Remember	2
16.	Define saturation region?	Remember	2
17.	Write the relation between IC, β , IB and ICBO in a BJT?	Knowledge	2
18.	Define cutoff region?	Remember	2
19.	Define active region?	Remember	2
20.	Describes the various current components in a BJT?	Knowledge	2
21.	Define amplifier?	Remember	2
22.	Draw the hybrid model of a CB configuration?	Knowledge	2
23.	List the classification of amplifiers.	Remember	2
24.	List the classification of amplifiers based on frequency of operation	Remember	2
25.	Define various hybrid parameters.	Remember	2
26.	Draw the hybrid equivalent model of CE Amplifier	Understand	2
27.	In a multistage amplifier, what is the coupling method required to amplify dc signals?	Remember	2
28.	Write the expression for lower 3 – dB frequency of an n – stage amplifier with non – interacting stages.	Remember	2
29.	Two stages of amplifier are connected in cascade. If the first stage has a decibel gain of 40 and second stage has an absolute gain of 20 then what is the overall gain in decibels.	Evaluate	2
30.	Why the overall gain of multistage amplifier is less than the product of gains of individual stages.	Understand	2
31.	What are the main characteristics of a Darlington amplifier?	Understand	2
32.	Why direct coupling is not suitable for amplification of high frequency	Understand	2

UNIT - III Long Answer Questions:

S.No.	Question	Blooms Taxonomy Level	Course Outcome
1.	Explain the operation of FET with its characteristics and explain the different regions in transfer characteristics?	Comprehension	3

		OUTPATTANO VIOLEN BARRO COL	CATON
2.	Define pinch-off voltage and trans conductance in field effect transistors?	Comprehension	3
3.	With the help of neat sketches and characteristic curves explain the construction & operation of a JFET and mark the regions of operation on thecharacteristics?	Application	3
4.	Explain how a FET can be made to act as a switch?	Knowledge	3
5.	Bring out the differences between BJT and FET. Compare the three configurations of JFET amplifiers?	Knowledge	3
6.	Create a relation between the three JFET parameters, μ , r d and gm?	Creating	3
7.	How a FET can be used as a voltage variable Resistance (VVR)?	Remember	3
8.	Explain the construction & operation of a P-channel MOSFET in enhancement and depletion modes with the help of static drain characteristics and transfer characteristics?	Understand	3
9.	Sketch the drain characteristics of MOSFET for different values of VGS& mark different regions of operation.	Comprehension	3
10.	Explain the principle of CS amplifier with the help of circuit diagram. Derive the expressions for AV, input impedance and output Impedance?	Understand	3
11.	Write the expressions for mid-frequency gain of a FET Common Source?	Knowledge	3
12.	Discuss the high frequency response of CD Configuration?	Knowledge	3
13.	What is the effect of external source resistance on the voltage gain of a common source amplifier? Explain with necessary derivations?	Remember	3
14.	Draw the small-signal model of common drain FET amplifier. Derive expressions for voltage gain and output resistance?	Analyze	3
15.	 a) Solve the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend: i.100 – 110000 ii. 11010 - 1101. b) Construct a table for 4 -3 -2 -1 weighted code and write 9154 using this code .Write short notes on binary number systems. 	Apply	4
16.	a) Solve arithmetic operation indicated below. Follow signed bit notation: i. 001110 + 110010 ii. 101011 - 100110. b) Explain the importance of gray code?	Apply	4

1		2500	27
17.	Solve (3250 - 72532)10using 10's complement?	Apply	4
18.	As part of an aircraft's functional monitoring system, a circuit is when the \gear down" switch has been activated in preparation for landing. Red LED display turns on if any of the gears fail to extend properly prior to landing. When a landing gear is extended, its sensor produces a LOW voltage. When a landing gear is retracted, its sensor produces a HIGH voltage. Design a circuit to meet this requirement? required to indicate the status of the landing gears prior to landing. Green LED display turns on if all three gears are properly extended	Understand	4
19.	Solve (a) Divide 01100100 by 00011001 (b) Given that (292)10 =(1204)b determine `b'	Apply	4
20.	Solve (a) What is the gray code equivalent of the Hex Number 3A7 (b) Find the biquinary number code for the decimal numbers from 0 to 9 (c) Find 9's complement (25.639)10	Apply	4
21.	Solve (a) Find (72532 - 03250) using 9's complement. (b) Show the weights of three different 4 bit self complementing codes whose only negative weight is - 4 and write down number system from 0 to 9.	Apply	4

Short Answer Ouestions:

S.No.	Question	Blooms Taxonomy	Course
		Level	Outcome
1.	Write the expressions for mid-frequency gain of a FET Common Source?	Knowledge	3
2.	Discuss the high frequency response of CD Configuration?	Knowledge	3
3.	What is the effect of external source resistance on the voltage gain of a common source amplifier? Explain with necessary derivations?	Remember	3
4.	Draw the small-signal model of common drain FET amplifier. Derive expressions for voltage gain and output resistance?	Analyze	3
5.	Draw the small-signal model of common source FET amplifier.	Analyze	3
6.	Why FET is called a voltage operated device?	Evaluation	3
7.	List the important features of FET?	Knowledge	3

		200	2 3
8.	Write short notes on millers theorem?	Knowledge	3
9.	Give the classifications of FETs and their application areas?	Knowledge	3
10.	Define pinch off voltage?	Comprehension	3
1.	Draw the structure of an n-channel JFET?	Knowledge	3
12.	Define rd and Gm?	Remember	3
13.	Draw the static characteristics curves of an n-channel JFET?	Comprehension	3
14.	Draw the drain characteristics of depletion type MOFET?	Knowledge	3
15.	Draw the small signal model of JFET?	Knowledge	3
16.	Draw the transfer characteristics for P-channel JFET?	Comprehension	3
17.	Draw the Drain V-I characteristics for p-channel JFET?	Knowledge	3
18.	Explain about ohmic and saturation regions?	Understand	3
9.	Draw the drain characteristics of an n-channel enhancement type MOSFET?	Knowledge	3
20.	Write short notes on binary number systems?	Understand	4
21.	Discuss 1's and 2's complement methods of subtraction?	Understand	4
22	Discuss octal number system?	Understand	4
23.	State and prove transposition theorem?	Knowledge	4
24.	Explain how do you convert AOI logic to NAND logic?	Understand	4
25.	Write a short note on five bit BCD codes?	Understand	4

UNIT - IV Long Answer Questions:

S.No.	Question	Blooms Taxonomy	Course
		Level	Outcome
	A combinational circuit has 4 inputs(A,B,C,D)		
	and three outputs(X,Y,Z)XYZ represents a binary		
1	number whose value equals the number of 1's at	Vnovelodas	6
1.	the input state the minterm expansion for the	Knowledge	
	X,Y,Z ii. state the maxterm expansion for the Y		
	and Z		
	A combinational circuit has four inputs		
2.	(A,B,C,D), which represent a binarycoded-	Apply	6
	decimal digit. The circuit has two groups of four		

		POSALLIMO PATEL BANDO CON	
	outputs -S,T,U,V(MSB digit) and W,X,Y,Z.(LSB		
	digit)Each group represents a BCD digit. The		
	output digits represent a decimal number which is		
	five times the input number. Illustrate the		
	minimum expression for all the outputs?		
	Summarize the following Boolean expressions		
	using K-map and implement them using NOR		
3.	gates: (a) $F(A, B, C, D) = AB'C' + AC + A'CD'$	Understand	6
	(b) $F(W, X, Y, Z) = W'X'Y'Z' + WXY'Z' +$		
	W'X'YZ + WXYZ.		
	Design BCD to Gray code converter and realize		
4.	using logic gates?	Understand	6
	Design EX-OR using NAND gates?	D' Understand Apply	(
5.	0 0	Understand	6
6.	compile the following expression using Karnaugh map (B 'A + A'B +AB')	Understand	6
	Design a circuit with three inputs(A,B,C) and two		
7.	outputs (X,Y) where the outputs are the binary	Understand	6
, .	count of the number of "ON" (HIGH) inputs?	Chaorstana	Ü
	Implement the INVERTER gate, OR gate and		
8.	AND gate using	Understand	6
9.	NAND gate, NOR gate?		6
9.			0
1.0	Design a circuit with four inputs and one output	** 1	
10.	where the output is 1 if the input is divisible by 3	Understand	6
	or 7?		
11.	Implement the Boolean function $F = AB + CD +$	Understand	6
	E	Chaorstana	Ŭ.
12.	Implement the Boolean function $F = AB + CD +$	Understand	6
12.	E using NAND gates only?	Onderstand	0
13.	Summarize the Boolean function $F(w, x, y, z) =$	Understand	6
13.	$\Sigma(1, 3, 7, 11, 15) + d(w, x, y, z) = \Sigma(0. 2, 5)$	Onderstand	O
14.	Construct the logic diagram of a full subtractor	Apply	5
14.	using only 2-input NAND gates?	Арргу	3
1.5	Construct the logic diagram of a full subtractor	A 1	F
15.	using only 2-input NAND gates?	Арріу	5
	Use a multiplexer having three data select inputs		
16.	to solve the logic for the function $F = \Sigma (0, 1, 2, 3, 1)$	Apply	5
	4, 10, 11, 14, 15)	• • •	
	Identify all the prime implicants and essential	**	
17.	prime implicants of the following functions Using	Knowledge	5
<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

	STORIE STORY
AND AND THE RESIDENCE OF THE PARTY OF THE PA	KATION

		75	
	karnaugh map. $F(A,B,C,D) =$		
	$\Sigma(0,1,2,5,6,7,8,9,10,13,14,15).$		
18.	Design a combinational circuit that generates the	Understand	5
10.	9's complement of BCD digit?	Chacistana	
	Design a combinational circuit to find the 2's		
19.	complement of given binary number and realize	Understand	5
	using NAND gates?		
20.	Design a logic circuit to convert gray code to	Understand Understand	5
20.	binary code?		3
21.	Design circuit to detect invalid BCD number and	Understand	5
21.	implement using NAND gate only?	Understand	<i>J</i>
22.	Explain the design procedure for code converter	Understand	5
22.	with the help of example?	Understand	3
23.	Construct half subtractor using NAND gates?	Apply	5
24.	Design an 8-bit adder using two 74283?	Understand	5
25.	Explain the working of carry look-ahead	Understand	5
23.	generator?	Onderstand	3
26.	Explain carry propagation in parallel adder with	Understand	5
20.	neat diagram?	Officerstand	3
27.	Explain the circuit diagram of full subtractor and	Understand	5
27.	full adder?	Onderstand	3
28.	Construct and explain the working of decimal	Apply	5
20.	adder?	Дрргу	<i>J</i>

Short Answer Questions:

S.No.	Question	Blooms	Course
		Taxonomy Level	Outcome
1.	Define K-map? Name its advantages and disadvantages?	Knowledge	6
2.	Write the block diagram of 2-4 and 3-8 decoders?	Understand	6
3.	Define magnitude comparator?	Knowledge	6
4.	Describe what do you mean by look-ahead carry?	Understand	6
5.	Summarize the Boolean functionx'yz + x'yz' + xy'z' + xy'zusing K- map?	Understand	6
6.	Explain how combinatorial circuits differ from sequential circuits?	Understand	6
7.	Explain what are the IC components used to design combinatorial circuits with MSI and LSI?	Understand	6

8. Design the two graphic symbols for NAND gate? Understand 9. Design the two graphic symbols for NOR gate? Understand 10. Summarize the Boolean function x'yz + x'yz' + xy'z' + xy'z without using K- map? 11. Explain the properties of EX-OR gate? Understand 6 Solve the function of fig with AND-OR INVRET implementations? 12. 13. Solve the following using NAND gates? a) (A+B)(C+D) b) A.B+CD(ABI+CD) 14. Sketch the following equation using k-map and realize it using NAND gate? Y=∑m(4,5,8,9,11,12,13,15) 15. Solve Y=ABI+CD+(AIB+CIDI) using NAND gate? Apply 16. State that AND-OR network is equivalent to NAND-NAND network? 17. Show both NAND and NOR gates are called Universal gates? Sketch the following logic function using k-map and implement it using logic gates? Y(A,B,C,D)=∑m(0,1,2,3,4,7,8,9,10,11,12,14) 19. Summarize the rules and limitations of K-map simplification? 19. Analyze the steps for simplification of POS expression? Apply 6			2	
Summarize the Boolean function x'yz + x'yz' + xy'z' + xy'z without using K- map? 11. Explain the properties of EX-OR gate? Understand 6 Solve the function of fig with AND-OR INVRET implementations? 12. Apply 6 13. Solve the following using NAND gates? a) (A+B)(C+D) b) A.B+CD(ABI+CD) 14. Sketch the following equation using k-map and realize it using NAND gate? Y=∑m(4,5,8,9,11,12,13,15) 15. Solve Y=ABI+CD+(AIB+CIDI) using NAND gate? Apply 6 16. State that AND-OR network is equivalent to NAND-NAND network? 17. Show both NAND and NOR gates are called Universal gates? Sketch the following logic function using k-map and implement it using logic gates? Y(A,B,C,D)=∑m(0,1,2,3,4,7,8,9,10,11,12,14) Summarize the rules and limitations of K-map simplification? Understand	8.	Design the two graphic symbols for NAND gate?	Understand	6
10. xy'z without using K- map? 11. Explain the properties of EX-OR gate? Solve the function of fig with AND-OR INVRET implementations? 12. Apply 6 13. Solve the following using NAND gates? a) (A+B)(C+D) b) A.B+CD(ABI+CD) 14. Sketch the following equation using k-map and realize it using NAND gate? Y=∑m(4,5,8,9,11,12,13,15) 15. Solve Y=ABI+CD+(AIB+CIDI) using NAND gate? Apply 6 16. State that AND-OR network is equivalent to NAND-NAND network? Show both NAND and NOR gates are called Universal gates? Sketch the following logic function using k-map and implement it using logic gates? Y(A,B,C,D)=∑m(0,1,2,3,4,7,8,9,10,11,12,14) Summarize the rules and limitations of K-map simplification? Understand 6	9.	Design the two graphic symbols for NOR gate?	Understand	6
Solve the function of fig with AND-OR INVRET implementations? 12. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.		Understand	6
implementations? 12.	11.	Explain the properties of EX-OR gate?	Understand	6
13. $(A+B)(C+D)$ b) $A.B+CD(ABI+CD)$ Apply 6 14. Sketch the following equation using k-map and realize it using NAND gate? $Y=\sum m(4,5,8,9,11,12,13,15)$ Apply 6 15. Solve $Y=ABI+CD+(AIB+CIDI)$ using NAND gate? Apply 6 16. State that AND-OR network is equivalent to NAND-NAND network? Knowledge 6 17. Show both NAND and NOR gates are called Universal gates? Apply 6 Sketch the following logic function using k-map and implement it using logic gates? $Y(A,B,C,D)=\sum m(0,1,2,3,4,7,8,9,10,11,12,14)$ Summarize the rules and limitations of K-map simplification? Understand	12.	implementations? ABC 00 01 11 10 0 0 0	Apply	6
14.using NAND gate? $Y = \sum m(4,5,8,9,11,12,13,15)$ Apply615.Solve $Y = ABI + CD + (AIB + CIDI)$ using NAND gate?Apply616.State that AND-OR network is equivalent to NAND-NAND network?Knowledge617.Show both NAND and NOR gates are called Universal gates?Apply6Sketch the following logic function using k-map and implement it using logic gates? $Y(A,B,C,D) = \sum m(0,1,2,3,4,7,8,9,10,11,12,14)$ Apply619.Summarize the rules and limitations of K-map simplification?Understand	13.		Apply	6
16. State that AND-OR network is equivalent to NAND-NAND network? 17. Show both NAND and NOR gates are called Universal gates? Sketch the following logic function using k-map and implement it using logic gates? Y(A,B,C,D)= Apply 6 ∑m(0,1,2,3,4,7,8,9,10,11,12,14) Summarize the rules and limitations of K-map simplification? 6 Understand	14.		Apply	6
16. NAND network? Show both NAND and NOR gates are called Universal gates? Sketch the following logic function using k-map and implement it using logic gates? Y(A,B,C,D)= Apply 6 ∑m(0,1,2,3,4,7,8,9,10,11,12,14) Summarize the rules and limitations of K-map simplification? Knowledge 6 Apply 6 Apply 6 Understand	15.	Solve Y=ABI+CD+(AIB+CIDI) using NAND gate?	Apply	6
17. gates? Sketch the following logic function using k-map and implement it using logic gates? $Y(A,B,C,D)=$ $\sum m(0,1,2,3,4,7,8,9,10,11,12,14)$ Apply 6 $\sum m(0,1,2,3,4,7,8,9,10,11,12,14)$ Summarize the rules and limitations of K-map simplification? 6 Understand	16.	_	Knowledge	6
18. implement it using logic gates? $Y(A,B,C,D)=$ Apply 6 $\sum m(0,1,2,3,4,7,8,9,10,11,12,14)$ 19. Summarize the rules and limitations of K-map simplification? Understand	17.		Apply	6
simplification? Understand 6	18.	implement it using logic gates? Y(A,B,C,D)=	Apply	6
20. Analyze the steps for simplification of POS expression? Apply 6	19.	-	Understand	6
	20.	Analyze the steps for simplification of POS expression?	Apply	6

UNIT - V

Long Answer Questions:

S.No.	Question	Blooms	Course
		Taxonomy	Outcome
		Level	
1	Explain the design of Sequential circuit with an example.	Understand	7
1.	Show the state reduction, state assignment?		S
	Write short notes on shift register? Mention its		
2.	application along with the Serial Transfer in 4-bit shift	Understand	5
	Registers?		
3.	Design a 4-bit BCD Ripple Counter by using T-FF?	Understand	5
4.	Define BCD Down Counter and Draw its State table for	Knowledge	5
4.	BCD Counter?	Knowledge	3

TI	M
	1
E TY	
E.	
200	

		25	
	Explain the state reduction and state assignment in		
5.	designing sequential circuit. Consider one example in the	Understand	5
	above process?		
	Design a sequential circuit with two D flip-ops A and B.		
	and one input x. when $x=0$, the state of the circuit remains		
6.	the same. When $x=1$,the	Understand	5
	circuit goes through the state transition from 00 to 11 to		
	11 to 10 back to 00.and repeats?		
7.	Design a Modulo-12 up Synchronous counter Using T-	Understand	5
	Flip Flops and draw the Circuit diagram?		
8.	Explain the Ripple counter design. Also the decade	Understand	5
	counter design?		
9.	Design a 3 bit ring counter? Discuss how ring counters	Understand	5
	differ from twisted ring counter?		
10.	Design a left shift and right shift for the following data	Understand	5
	10110101?		
11.	Design Johnson counter and state its advantages and	Understand	5
	disadvantages?		
12.	Explain with the help of a block diagram, the basic	Understand	5
	components of a Sequential Circuit?		
13.	Explain about RS and JK flip-flops?	Understand	5
14.	Define T–Flip-flop with the help of a logic diagram and	Knowledge	5
17.	characteristic table?	Knowledge	3
15.	Define Latch. Explain about Different types of Latches	Knowledge	5
13.	in detail?	Knowledge	3
16.	Explain in detail about RAM and types of RAM?	Understand	5
17.	Illustrate the features of a ROM cell?	Apply	5
18.	Explain in detail about ROM and types of ROM?	Understand	5
19.	Explain coincident memory decoding?	Understand	5
20.	Describe what is meant by memory expansion? Mention its limits?	Understand	5

Short Answer Questions:

S.No.	Question	Blooms	Course
		Taxonomy	Outcome
		Level	
1.	Differentiate combinational and sequential logic circuits?	Apply	5
2.	Explain basic difference between a shift register and counter?	Understand	5

		79	
3.	Illustrate applications of shift registers?	Apply	5
4.	Define bidirectional shift register?	Knowledge	5
5.	Describe dynamic shift register?	Knowledge	5
6.	Convert a JK Flip Flop to T	Understand	5
7.	Classify the basic types of counters?	Understand	5
8.	Differentiate the advantages and disadvantages of ripple counters?	Apply	5
9.	Convert a JK Flip Flop to SR	Understand	5
10.	Explain what is a variable modulus counter?	Understand	5
11.	Design and explain gated latch logic diagram?	Understand	5
12.	Define race around condition? How it can be avoided?	Knowledge	5
13.	Convert a JK Flip Flop to D	Understand	5
14.	Convert a SR Flip-Flop to JK	Understand	5
15.	List the types of RAM.	Knowledge	5
16.	State the features of a ROM cell?	Understand	5

OBJECTIVE QUESTIONS:

UNIT-I

1.	The conventional current in a P	N junction diode	e flows:]
	(a) From positive to negative		(b) From negative to positive		
	(c) In the direction opposite to t	he electron flow	. (d) Both (a) and (c) above		
2.	The cut in voltage (or knee volt	tage) of a silicon	diode is	[]
	(a) $0.2V$ (b) $0.6V$	(c) 0.8 V	(d) 1.0V		
3.	When a diode is reverse biased,	it is equivalent	to	[]
	(a) An OFF switch	(b) an ON swite	eh		
	(c) A high resistance	(d) none of the	above		
4.	The resistance of a diode is equa	al to		[]
	(a) Ohmic resistance of the P- a	nd N- semicond	uctors (b) Junction resistance		
	(c) Reverse resistance	(d) Alg	gebraic sum of (a) and (b) above		
5.	For a silicon diode, the value of	the forward - bi	as voltage typically	[]
	(a) Must be greater than 0.3	SV	(b) Must be greater that	n 0.7V	
	(c) Depends on the width of the	depletion region	1		
	(d) Depends on the concentration	on of majority ca	rriers		
6.	When forward biased, a diode			[]
	(a) Blocks current	(b) conducts cu	rrent		
	(c) Has a high resistance	(d) drops a larg	e voltage.		
7.	A PN junction diode's dynamic	conductance is	directly proportional to	[]
	(a) The applied voltage	(b) the tempera	ture		
	(c) The current	(d) the thermal	voltage		

	8. The forward region of a semiconductor diode characteristic curve is w	here [diode :	appears	as
	(a) Constant current source (b) a capacitor				
	(c) An OFF switch (d) an ON switch				
	9. At room temperature of 25 $^{\circ}$ C, the barrier potential for silicon is 0.7 V. Its value a (a) 0.5 V (b) 0.3 V (c) 0.9 V (d) 0.7 V	at 125	5° C is[]		
	10. Junction breakdown of a PN junction occurs	[]		
	(a) With forward bias (b) with reverse bias	-	-		
	(c) Because of manufacturing defect (d) None of these				
	11. Reverse saturation current in a silicon PN junction diode nearly doubles for every	1			
	[1			
	(a) 2° C rise in temperature (b) 5° C rise in temperature	,			
	(c) 6° C rise in temperature (d) 10° C rise in temperature				
	12. The transition capacitance of a diode is 1nF and it can withstand a revers	e not	ential o	f 400V	Α
	capacitance of 2nF which can withstand a reverse potential of 1 kV is obtained by			10011	
	(a) two 1nF diodes in series	:			
	(b) six parallel branches with each branches comprising there 1nF diodes in	series	3		
	(c) two 1nF diodes in series				
	(d) three parallel branches with each branch comprising 1nF diodes in series 13. A zener diode	г	1		
		L]		
	(a) has a high forward-voltage rating(b) has a sharp breakdown at low reverse voltage				
	(c) is useful as an amplifier				
	(d) has a negative resistance				
	14. A tunnel- diode is	[]		
	(a) a very heavily-doped PN junction diode	L	J		
	(b) a high resistivity PN junction diode				
	(c) a slow switching device				
	(d) used with reverse bias				
	15. The light-emitting diode (LED)	[]		
	(a) is usually made from silicon	L	J		
	(b) uses a reverse-biased junction				
	(c) gives a light output which increases with the increase in temperature				
	(d) depends on the recombination of holes and electrons				
16.	LED's do not require	ſ	1		
	(a) heating (b) warm-up time		-		
	(c) Both (a) and (b) above (d) non of above				
17.	The sensitivity of a photodiode depends upon	[]		
	(a) light intensity and depletion region width				
	(b) depletion region width and excess carrier life time				
	(c) Excess carrier life time and forward bias current.				
	(d) Forward bias current and light intensity.				
18.	LEDs are commonly fabricated from gallium compounds like gallium arsenide	and	gallium	phosphi	ide
	because they []			
	Are cheap (b) are easily available				
	Emit more heat (d) emit more light.				
	A LED is basically a P-N junction.	[]		
(a)	forward-biased (b) reverse-biased				

(c) lightly-doped (d) h 20. As compared to a LED display, the distin	neavily-doped act advantage of an LCD display is that it re	quires	
	[]	
	extremely-bias		
(c) No forward-bias (d) a solid cr 21. Before illuminating a P-N junction photo	·	г	1
(a) Reverse-biased (b) forward-		[]
(c) Switched ON (d) switched			
22. A LED emits visible light when its		[]
	lepletion region widens	L	J
•	P-N junction becomes hot.		
23. In LED, light is emitted because		[]
(a) Recombination of charge carriers takes pl	ace		
(b) Diode gets heated up			
(c) Light falling on the diode gets amplified			
(d) Light gets reflected due to lens action.		г	1
24. GaAs, LEDs emit radiation in the(a) Ultraviolet region (b) violet - blue gree.	n range of the visible region	L	J
(c) Visible region (d) infra-red			
	region		
UNIT-II			
1. The "cut-in" voltage of a silicon small-si	~	[]
(a) 0V (b) 0.2V (c) 0.5V	(d) 0.8V		
-	ors is biased in the reverse direction and the	ie emitte	r junction in the
forward direction, the transistor is said to			
(a) Active region (b) Softwarting region (c) Softwarting region (d) r	(b) cut-off region		
(c) Saturation region (d) r 3. The transistor is said to be in saturation r	none of them.	Г	1
a. both collector and emitter junctions are f		[]
b. both collector and emitter junctions are in			
c. emitter junction is forward biased, but the			
d. emitter junction is reverse biased, but the	•		
	n emitter configuration the cut-off condition	n is achie	eved by applying
a minimum reverse voltage across the			
	[]		
(a) $0V$ (b) $0.7 V$ (c) $1.5V$			
5. A transistor connected in common ba	•	[]
(a) a high input resistance and a low outp			
(b) a low input resistance and high output			
(c) a low input resistance and a low outp			
(d) a high input resistance and a high out		г	1
6. Which of the following is not a time (a) v_{ce} (b) V_{CE} (c) v_{CE}	(d) V_{ce}	L	J
7. In the Ebbers-Model of a bipolar tran		Г	1
a. Forward transmission from emitter to		L	J
b. Reverse transmission from collector			
c. Common base current gain			
d. Both (a) and (c) above			
	pipolar transistor for a collector current of 1	.5 mA is	
(a) 0.050 (b) 0.05×10^{-3}	O(c) 37.5 O (d) None of the above	-	

9. The resistance r_{bb} in the low to	frequency	hybrid-π mode	l of a bipolar traı	nsistor rej	presents	S
				[]	
a. Base spreading resistance						
b. A.C. resistance for forward bi						
c. The effect of feedback between	en the emit	tter-base juncti	on and collector-	base junc	ction du	e to Early effect
d. None of the above						
10. The capacitance C _e in the high	h frequenc	y hybrid-π mod	del of a bipolar tr	ansistor	represei	nts the
				[]	
(a) Depletion region capacitance		(b) Emitter di	ffusion capacitar	ice		
(c) Emitter-base junction capacitance	e (d) Sur	n of the (b) and	(c) above			
11. For a common emitter amplifier	having a	small un bypa	ssed emitter resi	stance (F	R _E) the	input resistance is
approximately equal to		•	[]		•
(a) R_E (b) h_{fe} (c) h_f	e RE	(d) R_E/h_{fe}	-	-		
12. The voltage gain of a common					[1
(a) zero (b) less than t	_	(c) unity	(d) greater tha	n unity	L	,
(1) 1111		(1) 332213	(4) 8-1111-11			
13. For a common base transistor	r amplifier	having input	esistance (R _i) ar	nd output	resista	nce (R ₀), which of
the following statements hold	_	8 r	(=-1)	[1	(0),
	-	s high, R ₀ is lo	XV	L	ı	
(c) R _i and R ₀ are both medium		•	••			
14. The current gain of an emitter					Γ	1
(a) zero (b) greater than unity		(c) less than u	nity (d) all	of them	L	J
15. Which of the following transi					[1
(a) common-base	•	nmon-collector		11.	L	J
(c) common-emitter		e of them				
16. In an ac amplifier, larger the i			o cional courca		г]
(a) Greater the overall voltage gain			input impedance	0	L	J
			e circuit voltage			
17. The main use of an emitter fo			e circuit voltage	gaiii.	г	1
			na daviaa		L]
(a) power amplifier	(b) mip	edance matchi	•			
(c) low-input impedance circuit	. 1.	(d) follower o	i base signai.		г	1
18. An ideal amplifier is one which		140 0	4. :		L]
(a) has infinite voltage gain (b) re				S		
(c) has positive feedback			uency response.		r	1
19. The voltage gain of a single-s					L	J
(a) its ac load is decreased (b)re						
(c) emitter resistance R_E is increased				1 4		
20. When emitter bypass capacit	or in a co	mmon-emitter	amplifier is rem	oved, its		is considerably
reduced.				l]	
		resistance				
	oltage gair				-	-
21. Unique features of a CC ampl					l	J
(a) steps up the impedance level	` '	s not increases	0			
(c) acts as an impedance matching of		(d) all of the a			_	_
22. The h-parameters are called h	• •		they		[]
(a) are different from y- and	_	eters.				
(b) are mixed with other para						
(c) apply to circuits contained						
(d) are defined by using both	open-circ	uit and short-ci	rcuit termination	S		

23. Which of the following stateme	ent is not correct regarding the h-parameters of a	transist	tor
-	[]	
(a) The values of h-parameters can	be obtained from transistor characteristics.		
(b) their values depends upon the t	ransistor configuration		
(c) their values depend on operating	g point		
(d) they are four in number			
24. Which of the following four h-	parameters of a transistor has a greatest value	[]
(a) h_i (b) h_r (c) h_0 (d) h_f			
26. Which of the following four h-	parameters of a transistor has a smallest value?	[]
(a) h_i (b) h_r (c) h_0 (d) h_f			
27. The typical value h _{ic} is		[]
(a) $1 \text{ K}\Omega$ (b) $40 \text{ K}\Omega$	(c) 100 K Ω (d) 2 M Ω		
28. The h-parameters of a transisto	r depend on its	[]
(a) Configuration (b) ope	erating point		
(c) Temperature (d) all	of the above		
29. The output admittance h ₀	of an ideal transistor connected is comm	on-base	configuration is
(a) 0 (b) $\frac{1}{r}$ Siemens (c) $\frac{1}{\beta R}$		[]
(a) 0 (b) $\frac{1}{a}$ (c) $\frac{1}{aa}$	(d) -1		
30.	52 VO 1 0 A	06	X 7 701 11 .
	= 5.2 K Ω , and r_{bb} = 0. At room temperature,	-	mv. The collector
current, I_C will be	(1) 0.516]	
(a) 10 mA (b) 5 mA (c) 1 m	A (d) 0.5 Ma		
UNIT-III			
1. A field effect transistor (FET) of	onerates on	[]
	(b) Minority carriers only	L	J
(c) Positively charged ions only	(b) Himority curriers only		
2. In JFET operating above pinch	-off voltage the	[]
(a) Drain current remains practical		L	J
(b) Drain current starts decreasing	ij Constant		
(c) Drain current increases rapidly			
(d) Depletion region becomes small	ler		
3. The JFET is oftenly called squa		[]
(a) Trans-conductance curve is par		L	J
	ource varies inversely as square of the drain cur	rent	
	of drain voltage for a fixed gate- to-source voltage		
<u>-</u>	aries as a square of the reverse gate voltage		
	ype MOSFET, the gate voltage has to be	[1
(a) Low positive	(b) High positive	L	J
(c) High negative	(d) Zero		
	are preferred more than P-channel's because	[1
(a) N-channel devices are faster th		L	J
(b)N-channel devices consumes le			
	packing density than P-channel devices		
(d)Both (a) and (c) above	parameter at the parame		
	witch, the P-channel MOS switch has	[1
(a) Same ON resistance	(b) Less ON resistance	L	J
(a) More ON resistance	(d) either (a) or (b)		
	FET because as the temperature of the FET incr	eases	1
(a) the mobility decreases	(b) the trans-conductance increases	~L	
· · · · · · · · · · · · · · · · · · ·			

	59				
(c) the drain current increases (d) the mobility increas 8. (1217)8 is equivalent to		[]		
(A) (1217)16 (B) (028F)16 (C) (2297)10 (D) (0B17)16					
9. The smallest integer than can be represented by an 8-bit number in 2's complement form is [
(A) 256 (B) -128 (C) -127 (D) 0	•				
10. P is a 16-bit signed integer. The 2's complement	t representation of P is (F87B)!	6. The	2's complement		
representation of 8*P is	[]		_		
(A) C3D8 (B) 187B (C) F878 (D) 987B.					
11. Convert (101101.1101) binary number to decimal n	umber	[]		
a). 45.8125 b) 44.8125 c) 45.8215 d) 44.8215					
12. Express the number 107 into 1's compliment form.		[]		
a).10010100 b)10010101 c) 10000100 b)10000101					
13. BCD addition for decimal number 113 & 101 is		[]		
a) 214 b) 241 c)142 d)124					
14. convert 101011 to gray code number		[]		
a). 111110 b) 110110 c)101110 d)111011.					
15. What is the minimum number of gates required to implement the Boolean					
function (AB+C) if we have to use only 2-input NOR ga	[]			
(A) 2 (B) 3 (C) 4 (D) 5 16. convert 011001 to gray code number	ſ]			
a). 111110 b) 110110 c)101110 d)NONE					
17. BCD addition for decimal number 143 & 167 is []					
a) 214 b) 241 c)142 d)NONE					
18. Any negative number is recognized by its [
a) MSB b) LSB c) Bits	d) Nibble	L	J		
			_		
19. The base or radix of binary number system isa) 2 b) 8 c) 10	_· d) 16	[]		
20. The quantity of double word is	u) 10	[]		
UNIT-IV					
1. What is the minimum number of gates required to imp	_				
function (AB+C) if we have to use only 2-input NOR ga	ates?				
(A) 2 (B) 3 (C) 4 (D) 5 2. A bulb in a staircase has two switches, one switch being at the ground floor					
and the other one at the first floor. The bulb can be turned ON and also can					
be turned OFF by any one of the switches irrespective of the state of the					
other switch. The logic of switching of the bulb resembles					
(A)an AND gate (B) an OR gate (C) an XOR gate (D) a NAND					

3. Match the logic ga5tes in Column A with their equivalents in Column B.

4. For the output F to be 1 in the logic circuit shown, the input combination should be

(A) (A)
$$A = 1$$
, $B = 1$. $C = 0$ (B) $A = 1$, $B = 0$, $C = 0$

(B) (C)
$$A = 0$$
, $B = 1$. $C = 0$ (D) $A = 0$, $B = 0$, $C = 1$

5) Which one of the following circuits is NOT equivalent to a 2-input XNOR (exclusive NOR) gate?

6) Which of the following Boolean Expression correctly represents the relation between P, Q, R and M1?

7)

The minterm expansion of f (P, Q, R) = PQ + $Q\overline{R}$ + $P\overline{R}$ is

(A)
$$m_2 + m_4 + m_6 + m_7$$

(B)
$$M_0 + M_1 + M_3 + M_5$$

(C)
$$m_0 + m_1 + m_6 + m_7$$

(D)
$$m_2 + m_3 + m_4 + m_5$$

[

]

The truth table

8).

×	Y	f(X,Y)
О	О	O
О	1	О
1	0	1
1	1	1

represents the Boolean function (A) \times (B) \times + \times

(C) X⊕Y

(D) Y

- 9) The output Y in the circuit below is always '1' when
- (A) two or more of the inputs P,Q,R are '0'
- (B) two or more of the inputs P,Q,R are '1'
- (C) any odd number of the inputs P,Q,R is '0'
- (D) any odd number of the inputs P,Q,R is '1'

- 10. What is the minimum number of gates required to implement the Boolean function (AB+CD) if we have to use only 2-input NAND gates?
 - (A) 2 (B) 3 (C) 4 (D) NONE
- 1. The Boolean function realized by the logic circuit shown is

- (A) $F=\Sigma m(0,1,3,5,9,10,14)$
- (B) $F=\Sigma m(2,3,5,7,8,12,13)$
- (C) $F=\Sigma m(1,2,4,5,11,14,15)$
- (D) $F=\Sigma m(2,3,5,7,8,9,12)$
- 2. The Boolean expression for the output f of the multiplexer shown below is

(D) $\overline{P+Q+R}$

3. For the circuit shown in the following figure I0-I3 are inputs to the 4:1 multiplexer R(MSB) and S are control bits

1

1

1

]

The output Z can be represented by

(A) PQ+PQS+QRS

- (B) PQ + PQR + PQS
- (C) PQR + PQRS + QRS
- (D) PQR + PQRS + PQRS + QRS
- 4). How can Parallel data be taken out of shift register simultaneously
- a) Use Q output of the first F.F b) Use (
 - b) Use Q output of the last F.F
- c) Tie all Q outputs together d)
- d) Use Q output of each F.F
- 5) In a 16-bit Johnson Counter sequence there re totally how many bit patterns [
- a) 2 b) 6 c) 12 d) 24.
- 6). A 122-ring counter requires a minimum of
- a) 10 F.F b) 12 F.F c) 6 F.F d) 2-F.F
- 7). A mod-16 counter, holding the count 1001. What will be count after 31 clock cycles?

[

- a) 1000 b) 1010 c) 1011 d) 1101
- 8) A sequential circuit does not use clock pulse is
- a) Asynchronous sequential circuit b) Asynchronous sequential circuit
- c) Counter d) Shift register
- 9). In a 8- bit ring counter initial state 10111110, what is state after 4th clock pluse [
- a) 11101011 b) 00010111 c)11110000 d)00000000
- 10). With 200Hz clock frequency 8 bits can be serially entered into shift register in
- a) 4 μs b) 40 μs c) 400μs d) 40 ms

UNIT-V

- 1).If all the flip-flops were reset to 0 at power on, what is the total number of distinct outputs (states) represented by PQR generated by the counter?
 - (A) 3 (B) 4 (C) 5 (D) 6
- 2. If at some instance prior to the occurrence of the clock edge, P. Q and R have a value 0, 1 and 0 respectively, what shall be the value of PQR after the clock edge?[
 - (A) 000 (B) 001 (C) 010 (D) 011
- 2.For each of the positive edge-triggered J-K flip flop used in the following figure, the propagation delay is T

3. Which of the following waveforms correctly represents the output at Q1?

- 4.Two D flip-flops are connected as a synchronous counter that goes through the following QBQA sequence $00 \square 11 \square 01 \square 10 \square 00 \square \dots$

The combination to the inputs DA and DB are

1

ſ

]

(A)
$$D_A = Q_B$$
; $D_B = Q_A$

(B)
$$D_A = \overline{Q_A}$$
; $D_B = \overline{Q_B}$

(C)
$$D_A = (Q_A \overline{Q_B} + \overline{Q_A} Q_B); D_B = \overline{Q_A}$$

5. Assuming that flip-flops are in reset condition initially, the count sequence observed at QA in the circuit shown is ſ

- (A) 0010111... (B) 0001011... (C) 0101111... (D) 0110100...
- 6. Consider the following circuit involving three D-type flip-flops used in a certain type of counter configuration

- 7. The minimum number of D flip-flops needed to design a mod-258 counter is] (A) 9 (B) 8 (C) 512 (D) 258
- 8. A bulb in a staircase has two switches, one switch being at the ground floor and the other one at the first floor. The bulb can be turned ON and also can be turned OFF by any one of the switches irrespective of the state of the other switch. The logic of switching of the bulb resembles
 - A) AND gate (B) OR gate (C) XOR gate (D) NAND
- 9. The minimum number of D flip-flops needed to design a mod-128 counter is

- (A) 9 (B) 8 (C) 16 (D) 258 (E) NONE
- 10. The minimum number of T flip-flops needed to design a mod-32 counter is
- (A) 4 (B) 8 (C) 16 (D) 32 (E) NONE

XII. WEBSITES:

- 1. http://www.onsemi.com
- 2. http://www.kpsec.freeuk.com/symbol.htm
- 3. http://buildinggadgets.com/index_circuitlinks.htm
- 4. http://www.guidecircuit.com
- 5. www.mathsisfun.com/binary-number-system.html
- 6. www.allaboutcircuits.com
- 7. www.electronics-tutorials.ws

XIII. EXPERT DETAILS:

- 1. Mr. S. Srinivasan, Professor, Indian Institute of Technology, Madras
- 2. Dr. P. V. D. Somasekhar Rao (JNTUH)
- 3. Dr. T.Satya Savithri (JNTUH)
- 4. Mrs N Mangala Gouri (JNTUH)
- 5. Dr.D.Rama Krishna (O.U)
- 6. Dr.K.Chandra Bhushana Rao (JNTUK)
- 7. Dr. V. Sumalatha (JNTUA)
- 8. Dr. M.N Giriprasad (JNTUA)

XIV. JOURNALS:

INTERNATIONAL

- 1. IEEE Transaction on Electronic Devices
- 2. International Journal of Micro and Nano Electronics, Circuits and Systems
- 3. Active and Passive Electronic Components (ISSN: 0882-7516)
- 4. International Journal Of Circuits And Architecture Design (IJCAD)

NATIONAL

- 1. Journal of Active and Passive Electronic Devices
- 2. Journal of Electronic Testing
- 3. IETE Journal of Research
- 4. Journal of Electrical Engineering and Electronic Technology
- 5. IET Computers & Digital Techniques

XV. LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Formation of depletion layer in PN junction diode
- 2. Zener diode as voltage regulator
- 3. Common Collector Configuration
- 4. Need for biasing
- 5. Thermal runaway, thermal stability
- 6. Design of CE amplifier
- 7. MOSFET Characteristics in Enhancement and Depletion Mode

- 8. Binary adders
- 9. Encoder& Decoder
- 10. Multiplexer
- 11. Flip-flops and latches
- 12. ROM,RAM,PLA,PAL